Step of Proof: nth_tl_is_fseg
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
nth
tl
is
fseg
:
T
:Type,
L1
,
L2
:(
T
List). fseg(
T
;
L1
;
L2
)
(
n
:{0..(||
L2
||+1)
}. (
L1
= nth_tl(
n
;
L2
)))
latex
by ((((Unfold `fseg` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
)
CollapseTHEN (ExRepD))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
L1
:
T
List
C1:
3.
L2
:
T
List
C1:
4.
L
:
T
List
C1:
5.
L2
= (
L
@
L1
)
C1:
n
:{0..(||
L2
||+1)
}. (
L1
= nth_tl(
n
;
L2
))
C
2
:
C2:
1.
T
: Type
C2:
2.
L1
:
T
List
C2:
3.
L2
:
T
List
C2:
4.
n
: {0..(||
L2
||+1)
}
C2:
5.
L1
= nth_tl(
n
;
L2
)
C2:
L
:
T
List. (
L2
= (
L
@
L1
))
C
.
Definitions
fseg(
T
;
L1
;
L2
)
,
P
Q
,
P
&
Q
,
P
Q
,
P
Q
,
,
{
x
:
A
|
B
(
x
)}
,
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
,
{
i
..
j
}
,
n
+
m
,
||
as
||
,
#$n
,
nth_tl(
n
;
as
)
,
s
=
t
,
as
@
bs
,
type
List
,
Type
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
Lemmas
nth
tl
wf
,
int
seg
wf
,
length
wf1
,
append
wf
origin